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dissociative Eigen mechanism for reactions of divalent 
transition metal ions such as nickel(II) and cobalt(II) 
has recently received support by the observation21 that 
their substitution reactions with some uncharged ligands 
are characterized by markedly positive AV*. 

It should be noted that the value of AH* for aquo 
exchange with Rh(NHs)5OH2

3+ is actually 2.0 kcal 
mol - 1 less than for the analogous reaction of Co(NH3)6-
OH2

3+, whereas for any probable geometry of the tran­
sition states the ligand field contribution to AH* should 
be at least 20 kcal mol - 1 greater for Rh(III) than for 
Co(III).22 This indicates that ligand field effects can­
not be a major component of AH* in substitution reac­
tions at both Rh(III) and Co(III) centers. Our assign­
ment of an associative mechanism for Rh(III) and a 
dissociative one for Co(III) provides an explanation for 
this observation, since the energy of bond formation 
between the incoming aqua nucleophile and the Rh(III) 
center could lower the activation enthalpy to a value 
less than that of the Co(III) substitution. The in­
creased importance of the associative mechanism as one 
descends a periodic group can be attributed to the en­
hanced tendency of the larger central metal atom to 
engage in covalent bonding to the incoming nucleo­
phile (as measured by the "Class B" character23 or 
"softness"24 of the metal atom), and to the reduced 
steric hindrance to the entry of the seventh ligand. 

The factors favoring an associative mechanism for 
Cr(III) as opposed to a dissociative mechanism for 
Co(III) remain unresolved. Calculations of the ligand 
field contributions to AH*, made by Spees, Perumareddi 
and Adamson22 on the basis of assumed spin pairing in 
the transition state, do indeed suggest that a seven-co-

(21) E. F. Caldin, M. W. Grant, and B. B. Hasinoff, Chem. Commun., 
1351 (1971). 

(22) S. T. Spees, J. R. Perumareddi, and A. W. Adamson, / . Amer. 
Chem. Soc, 90, 6626 (1968). 

(23) S. Ahrland, J. Chatt, and N. R. Davies, Quart. Rev., Chem. Soc, 
12, 265(1958). 

(24) R. G. Pearson, Chem. Brit., 3, 103 (1967). 

The ligands or substituents of many molecules define 
polytopes, i.e., polygons or polyhedra. Within 

this class of molecules, isomers defining different poly­
topes are designated polytopal isomers.2 The concept 

(1) National Science Foundation Predoctoral Fellow. 
(2) As originally defined,3 polytopal isomers are characterized by 

their idealized polytopal forms in order to maximize symmetry. In 

ordinate transition state of local D5n symmetry may be 
favored over alternative dissociative pathways for 
Cr(III), while a five-coordinate transition state may be 
favored, albeit marginally, for analogous Co(III) sys­
tems. However, the general observation25 that stereo­
chemical change is rarely encountered in Cr(III) sub­
stitutions is difficult to reconcile with a transition state 
of D5h symmetry, and the Spees-Perumareddi-Adam-
son calculations indicate that the most likely alternative 
stereoretentive seven-coordinate transition state, which 
would have C2c local symmetry, would involve a higher 
ligand-field contribution to AH*. A further uncer­
tainty arising from the Spees-Perumareddi-Adamson 
analysis is that the alternative assumption of a high-
spin transition state for substitutions at Cr(III) leads to 
the result that ligand-field effects would favor a dis­
sociative process. 

We conclude that the analysis of AH* values in terms 
of ligand-field effects, as in the Spees-Perumareddi-
Adamson approach, involves significant uncertainties 
when applied to the problem of reaction mechanisms. 
While considerations of AS* values are rather more 
definitive, in the case of the aquo exchanges there still 
remains the ambiguity from the unknown molecularity 
with respect to the solvent as a nucleophile. This un­
certainty can involve even the sign of AS* as well as its 
numerical magnitude. By contrast, the sign and values 
of AV* appear to be more reliable in establishing reac­
tion mechanisms for aquo exchange systems such as 
those described in this paper. 
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(25) C. S. Garner and D. A. House, Transition Metal Chem., 6, 202 
(1970). 

of polytopal isomerism has proven to be useful in 
unifying seemingly diverse areas of structural chem­
istry. While the structural stereochemistry of poly-

this paper, the "nonidealized" shape of polytopal isomers will be con­
sidered and the symmetry of each polytopal form will be the standard 
molecular point group symmetry. 

(3) E. L. Muetterties, / . Amer. Chem. Soc, 91, 1636 (1969). 
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topal isomers can be discussed in terms of well-defined 
geometric and topological concepts,4 the need for a sys­
tematic and comprehensive treatment of the dynamic 
stereochemistry has been recognized.6 This paper rep­
resents an attempt to provide an approach which is 
meaningful and useful in a physical as well as mathe­
matical sense. While the use of models has usually 
obviated formal permutational approaches to struc­
tural stereochemistry, the representational difficulties 
encountered in dynamic stereochemistry necessitate a 
formal approach. 

In this paper, an isomerization process will be char­
acterized by the stereochemical relation of the reactant 
isomer and the product isomer. We thus speak of 
isomerization reactions as opposed to isomerization 
mechanisms. Different isomerization mechanisms may 
of course imply the same isomerization reaction, but by 
experimentally establishing an isomerization reaction, 
certain postulated mechanisms may be ruled out. 
Characterization of an isomerization reaction is there­
fore the first step toward verification of a proposed 
mechanism. 

To simplify discussion, only systems of two intercon-
verting polytopal isomers will be discussed in this paper. 
Also, only molecules having ligands of two different 
chemical identities will be considered. All the con­
cepts presented may be easily extended to cover more 
general cases. 

When a given polytopal isomerization reaction inter-
converts two polytopal isomers, the assumption is 
always made here that any intermediate configuration 
has a connectivity3 equal to two. Thus the reactions 
considered here may be unequivocally defined in terms 
of one reactant isomer and one product isomer. 

Definitions and Nomenclature 

Let R and T be the point groups of two poly­
topal isomers. Let the groups R and T consist of all 
proper rotation operations in R and T, respectively. 
The symbols R and T will also be used as labels which 
identify the geometries of the two polytopal forms. 

The set of n (unidentate) ligands is assigned indexed 
labels L, = (Z1, I2, . . ., In] so that all ligands are dis­
tinguishable. The n skeletal positions of polytopal 
isomers R and T are assigned indexed labels x«B = 
{s!R, s2

R, . . ., sn
R] and JC/ = {siT, s2

T, . . ., sn
T], re­

spectively. Permutational isomers of polytopal isomer 
R are described by 2 X n matrices 

123 
ijk 

>3...n\R 

k...l) 

where ligand indices are listed in the top row and below 
each ligand index is written the index of the skeletal 
position which that ligand occupies. (S)

T is defined 
similarly. 

123 
123 

..n\R 

..n) 
and 

123. . .n^T 

123. . .n 

are called reference isomers. The isomers drawn in 
Figure 1 illustrate this nomenclature. 

Assume that the set of n ligands contains W1 ligands of 

(4) E. L. Muetterties and C. M. Wright, Quart. Rev. Chem. Soc, 21, 
109 (1967). 

(5) G. Binsch, E. L. Eliel, and H. Kessler, Angew. Chem., 83, 618 
(1971); Angew. Chem., Int. Ed. Engl, 10, 570 (1971). 
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12 3 4 5 
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Figure 1. Some polytopal and permutational isomers of the mole­
cule MHP4 . H might represent a hydride ligand and P a trisub-
stituted phosphorus ligand. (a) and (b) indicate the indexing of 
skeletal positions, (c)-(f) show some isomers and the appropriate 
(J) matrices. 

one chemical identity (type I) and n2 ligands of a 
different chemical identity (type II). Ligands of type I 
are labeled with I1, I2, . . ., lni and ligands of type II are 
labeled with lm+h lni+2, . . ., In. Also, skeletal positions 
with indices 1,2, . . ., «j are occupied by ligands of type 
I, and skeletal positions with indices W1 + 1, «i + 2, 
. . ., n are occupied by ligands of type II. We define 
a group H, the group of allowed permutations, which 
acts on the numbers 1,2, . . ., n and contains all permu­
tations which permute the numbers 1,2, . . ., W1 among 
themselves and the numbers W1 + 1, W1 + 2, . . ., n 
among themselves. H therefore contains m! • n2! permu­
tations. Formally, H = Sni + Sn„ the direct sum6 of 
the symmetric groups 5B1 and S„2. 

As shown previously,7 representations of the group 
of allowed permutations are used to describe permuta­
tional isomerization reactions. Letting H map %.S

R 

onto %S
R by operating on the indices of the skeletal posi­

tions, a representation HRR is formed. Each ht
RR e HRR 

is a permutation operation which describes a permuta­
tional isomerization reaction and/or a point group 
operation of the polytopal isomer R. HRR is a group 
with the product operation defined by 

hRR.hRR = (ht-ht)
B* 

Products are read from right to left throughout this 
paper. The operations of the point group R can be 
represented by the permutation group RRR which oper­
ates on the indices of the skeletal positions of polytopal 

(6) For a rigorous definition see R. W. Robinson, / . Combinatorial 
Theory, 4,184(1968), or F. Harary, "Graph Theory," Addison-Wesley, 
Reading, Mass., 1969, p 163. 

(7) W. G. Klemperer, Inorg. Chem., 11, 2668 (1972). 
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Figure 2. A scheme which illustrates the relationship between 
three reactions /nCiC«, /;2

c«"s, and h3
c'c' which are all nondiffer-

entiable in a chiral environment. Skeletal positions are indexed 
as in Figure 1. 

isomer R. RRR similarly represents the point group R. 
Letting H map 2Cs

r onto JC/ by operating on the indices 
of the skeletal positions, the group HTT is defined. 
Subgroups TTT and TTT represent the point groups 
Tand T, respectively. 

Although products of the type hiTT-hjRR are unde­
fined, operations such as r(

TT t RTT have meaning. 
Let R be a subgroup of H such that the representation 
RRR is generated when R maps x,s

R onto JCS* by operat­
ing on the indices of the skeletal positions. Although 
the same symbol is used for point group and its per­
mutation group representation, the intended meaning 
should be clear from context. The representation RTT 

is formed when R maps jcs
r onto x / by operating 

on the indices of the skeletal positions. The permu­
tation groups R, T, and T are defined in the same fashion 
so that RTT, TRR, and TRR are well-defined groups. In 
Figure 1, we let R = C3. Then rf'0' = (1)(234)-
(S^c1C3 represents a rotation of the C3 polytopal isomer. 
,..C1C, _ (i)(234)(5)c<C4, however, describes a permuta­
tion isomerization reaction of the C4 isomer which 
converts isomer f into isomer d. 

The group of allowed permutations can also be used 
to describe polytopal isomerization reactions. Let­
ting each h( t H represent a mapping of 2C,B onto 
2C/ by operating on the indices of the skeletal posi­
tions, we form a pseudo-representation8 of H, HTR. 
Any polytopal isomerization reaction which converts 
isomers having geometry R into isomers having geome­
try T can be described by an h?R e HTR. For example, 
/J.C4CJ = (i)(2)(3)(45)c'4C'3 is a polytopal isomerization 
which converts isomer e in Figure 1 into isomer f; i.e., 
the permutation (1)(2)(3)(45) acts on the bottom row of 

/12345\c° 
V15234/ 

(8) HTR is not a true representation, since HTR is not a group (vide 
infra). 

giving the bottom row of 

/12345\c< 
V14235/ 

In chemical terms, the operation (l)(2)(3)(45)cv?a means 
"the ligand in skeletal position si°° is moved to skeletal 
position SiC4, the ligand in position s2

Cl is moved 
to position s2

c', the ligand in position ss
C3 is moved to 

position S3C>, the ligand in position s4
Cs is moved to 

position S5
0', and the ligand in position s-a

c° is moved 
to position S4

0V' HRT and HTR are not groups since 
products of the type ht

RT-hjRT are undefined. How­
ever, products 

hft-h,™ = (ht-hs)
RR 

and 

h BT. J1TT = (ht-h})
RT 

are well defined. The reverse reaction of the polytopal 
isomerization reaction /z/B is defined by 

The principle of microscopic reversibility9 guarantees 
that the definition is physically meaningful. 

Although the definitions and nomenclature presented 
in this section have been made with reference to poly­
topal isomers, it should be clear to the reader that they 
are equally valid for the description of stereoisomeriza-
tion reactions of any symmetric molecules. 

Enumeration Procedures 

Since the set HTR contains HiIn2] operations, one 
might conclude that there exist Ti1In2I distinct polytopal 
isomerization reactions which convert polytopal isomers 
having geometry R into isomers having geometry 
T. This would indeed be the case if both iso­
mers were fixed in an asymmetric environment. In 
most experimental situations, however, the isomers 
are free to rotate in a symmetric environment, and 
therefore certain polytopal isomerization reactions in 
HTR become symmetry equivalent. See, for exam­
ple, the reactions shown in Figure 2. Reaction 
Z11C4Cj converts isomer a to isomer b. Since isomers 
are assumed to be free to rotate in space, a and 
c are indistinguishable and the reaction which con­
verts a into b will be nondifferentiable from the 
reaction which converts c into b because reactions are 
defined solely in terms of reactant and product isomers. 
Mathematically speaking, hi°tC' and h2

CiC' are symmetry 
equivalent because 

IJC1CI = ^C1C3. ,.C1C, = ( ^ . ^ C 1 

i.e., hi = Ix2-Yy, n e C3. Using the same arguments on 
the symmetry of the product isomer, hs

c,C3 and h2
c'c° are 

symmetry equivalent because Zi3 = h-h2, h e C,. Also, 
Ij1CtC3 a n c j hftCz a r e equivalent since h3 = tx-h\-r-rl. 
We therefore make the following definitions. 

Two polytopal isomerization reactions ht
TR and h™ 

are nondifferentiable polytopal isomerization reactions 
in a chiral environment if eq 1 holds for some permu­
tation rt e R and some permutation ts e T. 

ht = trhrrf (1) 

(9) For further discussion, see R. L. Burwell, Jr., and R. G. Pearson, 
/ . Phys. Chem., 70, 300 (1966). 
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hiTB and hs
TR are differentiable polytopal isomerization 

reactions in a chiral environment if eq 1 does not hold. 
The relation between n* and hs denned in eq 1 is an 

equivalence relation which may be used to partition H 
into sets of equivalent operations called double cosets 
ThiR.10 These double cosets can be enumerated using 
eq Al given in Appendix I. DTR is the number of 
double cosets ThtR in H. Consequently, the set HTR 

can be partitioned into DTR different sets containing 
nondifferentiable reactions. We say that DTB is the 
number of polytopal isomerization reactions differ­
entiable in a chiral environment. As shown in Ap­
pendix I, DTR = DBT. 

Many experimental techniques are unable to dis­
tinguish enantiomeric isomers. Using the same ar­
guments given at the beginning of this section, one 
finds that this indistinguishability renders two polytopal 
isomerization reactions h?R and hjTR symmetry equiv­
alent if 

hTR = l k T T . h T B . f B B 

for some tk
TT eTTT and some TiRR e RBR. Accordingly, 

we define h{
TR and hjTR to be nondifferentiable polytopal 

isomerization reactions in a totally symmetric environ­
ment if eq 2 holds for some rt e R and some I, i. T. 

hi = Ij-hyfi (2) 

ht
TR and hjTR are differentiable in a totally symmetric 

environment if eq 2 does not hold. D^ = £>«?, 
defined as the number of reactions differentiable in a 
totally symmetric environment, is calculated using eq 
Al given in Appendix I. 

Topological Representation 

Assume that a polytopal isomerization reaction h0
TR 

and consequently its reverse reaction (h0-
1)BT intercon-

vert polytopal isomers R and T. The interconversions 
may be clearly viewed by constructing a topological 
representation.3 The topological representation of 
a polytopal isomerization reaction is a graph defined 
by labeled points representing permutational isomers 
of both polytopal isomers and lines which represent 
polytopal isomerization reactions. Two points are 
connected by a line if the reactions h0

TR and (h0-
l)RT 

interconvert the isomers which these points represent. 
In this section, the definitions given above will be used 
to define the structure of a topological represenation 
and then show which reactions must generate identical 
topological representations. Then the concept of 
connectivity3 will be discussed. Many procedures 
followed in this section have been outlined rigorously 
elsewhere11 and will not be repeated here in detail. 

The set of njn2l matrices (l
s)

R generated when HBR 

acts on the reference isomer ( ' ) / contains all permuta­
tional isomers of polytopal form R. Two matrices 
C) tR and (j);

fl represent the same permutational isomer 
if C ) / = rk

BX)iR, n * R. Therefore, if we partition HRR 

into right cosets RRR-hiBR, each coset represents a per­
mutational isomer. Since there exist \HBB\/\R\ = HiIn2!/ 
\R\ cosets, where \R\ is the number of operations in R, 
there exist HiIn2I/\R\ permutational isomers of polytopal 
isomer R. We choose one element from each coset and 

(10) M. Hall, Jr., "The Theory of Groups," Macmillan, New York, 
N. Y., 1959, pp 14-15. 

(11) W. G. Klemperer, J. Amer. Chem. Soc, 94, 6940 (1972). 

T3 

D,O u-ii 
h, -<l)(2)(3>(4)(5><6) 

D , 0 5 

Figure 3. Two enantiomeric polytopal isomerization reactions, 
(a) defines the indexing of skeletal positions, (b) and (c) show the 
reactions. 

combine these elements to form a set CR, the set of coset 
representatives. Each 
permutational isomer. 

CtB e CB represents a unique 

/J8E=IC*! = m!is!/|-R| 

is called the isomer count3 of polytopal isomer R. 

IT=\CT\ = ni!«j!/ | r | 

is defined similarly. Elements in the sets CR and CT are 
used to label the points of a topological representation. 
A line will connect points ct

R and c/ if 

tk
TT-Cj

T = h0
TB-rl

RB-cB (3) 

i.e., CjT = (tiT1-hori)TB-CiB for some rx e R and tk e T. 
Arguments used in ref 11 may be applied to show that 
two polytopal isomerization reactions h?R and h]TB 

will generate identical topological representations if 
hiTR and hjTR are formally nondifferentiable in a chiral 
environment. 

If polytopal isomerization reactions occur in an 
achiral environment,12 certain reactions which are 
formally differentiable in a chiral environment will always 
be experimentally nondifferentiable and therefore should 
be defined as generating the same topological representa­
tion. For example, the reactions hiD'° and hP3° 
shown in Figure 3 are formally differentiable in a chiral 
environment. In an achiral environment, however, 
they have equal probabilities of occurring since they 
differ only in that one reaction describes a net counter -

(12) An achiral environment is an environment which has reflection 
symmetry as opposed to a chiral environment, which does not have 
reflection symmetry. In the present case where molecules are free to 
rotate in solution or the gas phase, it is of course assumed that the 
environment has complete rotational symmetry. 
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clockwise rotation of an octahedral face, while the other 
describes a net counterclockwise rotation of an octahe­
dral face. We shall define this "chirality phenomenon" 
precisely. 

If R ^ R and T ^ 
as ('s)„

r and \ 
t„TT represent 
spectively. If 

7V3 then C ) / and f R % ) u
R as well 

TT('s)vT represent enantiomers if fc 
improper operations in R and 

then the reaction 
LoTTC)vT must occur 
achiral environment. 

h/R 

RR_ and 
T, re-

which converts f0
RRQu

R into 
with equal 
Since 

probability in an 

R r 

= toTT[ 

it follows that 

(I0-
1-K-T0)^ 

and therefore 

V0 ll-r, 

This relation motivates the following definitions. 
Two polytopal isomerization reactions ht

TR and hjTB 

are "mirror images" if 

K = tk-hyf, 

where tk and ?x are operations in T and R, respectively, 
which represent improper point group operations. 
If hiTR and h/R are also formally differentiable in a 
chiral environment, then they are enantiomeric reactions, 
or simply enantiomers. Either reaction may be referred 
to as a chiral reaction. If a reaction and its "mirror 
images" are nondifferentiable in a chiral environment, 
we call the reaction an achiral reaction. 

As a result of this digression, we note that two reac­
tions h0

TR and hp
TR should generate the same topological 

representation if they are enantiomeric reactions. Ac­
cordingly, for the case of a chiral reaction h0

TR, two 
points C,* and c / are connected by a line if and only 
if eq 3 or eq 4 holds for some r, e R, tk e T, and h/R, 
an enantiomer of h0

TR. 

f TT r T _ I. TR v RR r R 
•k Cj — np • ri - C ; (4) 

When the polytopal isomerization reaction h0
TR and 

its "mirror image" hv
TR operate on the permutational 

isomer represented by cf, the number of different 
permutational isomers of polytopal isomer T which 
may result is defined as the connectivity SB. 8T is de­
fined similarly. In terms of a topological representa­
tion, 5R is the number of different points c / which are 
connected to any given ct

R by a single line, and 8T is 
the number of different points cR which are connected 
to any given cf by a single line. The value of 8R and 
8T is invariant with respect to choice of cR and cf, as 
shown in Appendix II. 

Connectivities can be calculated using formulas 
presented in Appendix II. If h0

TR is an achiral reac­
tion, then 8R and 8T are evaluated using eq 5 and 6. 

(13) This assumption is equivalent to the assumption that the poly­
topal isomers have nonplanar achiral skeletal frameworks as well as 
achiral ligands. Other cases can be treated, but the problem becomes 
more complex. 

5« = 
R D L-1Th0 

T n KRh0 

(5) 

(6) 

Here, \R\ and \T\ are the number of operations in the 
groups R and T, respectively. \R D h„~1Th0\ is the 
number of operations which the groups R and K-1Th0 

have in common. Similarly, \T D KRh0-
1I is the num­

ber of operations which the groups T and KRh0-
l have 

in common. If h0
TR is chiral, then eq 7 and 8 are used 

to calculate connectivities. 

8B 

8T = 

\R 
2\R\ 

n K-
2\T\ 

1TKl 

\T 0 KTh0-

(7) 

(8) 

Equations 5-8 simplify when h0 = e, the identity oper­
ation. This is the case for the first reaction shown in 
Figure 3. Since the labeling of skeletal positions is 
arbitrary, skeletal positions may always be indexed 
such that any one specific polytopal isomerization re­
action is represented by the identity operation. 

By labeling skeletal positions such that KTR = eTR, 
eq 5 and 6 (or eq 7 and 8) may be combined to show that 

s*/5r = !*i/|r| 
Since IR = nJn2l/\R\ and IT = ni\n2\/\T\ 

IT/IR = | *7 | r | 

Consequently 

ITSJ rRsf (9) 

Since no assumptions were made regarding closure 
properties,3 this relation must hold for both closed and 
open systems. Of course it is assumed that the polyto­
pal isomerization process under discussion may be 
characterized by one permutation operation, h0

TR. This 
will always be true if only one polytopal isomeriza­
tion mechanism is operative and all intermediate con­
figurations have connectivities equal to two. Also, 
the physical validity of eq 5-8 is based on the assump­
tion that for polytopal isomers R and T, "memory 
effects" are ruled out {vide infra). 

Permutational Isomerization via Intermediate 
Polytopal Configurations 

In previous papers dealing with permutational isom­
erization reactions, a particular rearrangement pro­
cess could be characterized by a single permutation 
operation since the assumption was made that all inter­
mediate configurations14 had connectivities of two. 
When a permutational isomerization process proceeds 
via an intermediate configuration having a connectivity 
greater than two, it may be necessary to use two or more 
differentiable permutational isomerization reactions 
to describe the process. 

Let polytopal isomers having geometry R undergo 
permutational isomerization via the intermediate poly-

meant any configuration as-
lerization reaction. 

(14) By "intermediate configurations" is r 
sumed by a molecule during the course of an isom 
It need not correspond to a metastable intermediate or a transition 
state; i.e., it may characterize any point on the potential energy surface 
defined by the reaction pathway. 
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topal configuration T. Also, let the polytopal isomeri-
zation reaction h0

TR characterize this process. We first 
assume that h/R is achiral. Then all implied permuta-
tional isomerization reactions of isomers having geome­
try R have the form 

rf*-(h0^YT-tr-KTR-r?R = O v V " 1 - V V * ) B B 

where r(, rk e JR, tt e T. Since we are at this point only 
interested in permutational isomerization reactions 
differentiable in a chiral environment,7 only the set of 
\T\ operations 

(h0-iTh0)
RR = (h0-

l-t(-h0)
RR, u e T 

is of interest. This set is called the set of permutational 
isomerization reactions implied by h0

TR. If h0
TR is 

chiral and hp
TR is an enantiomeric reaction, then the 

4\T\ operations (hv-
lThv)

RR, (hp~
lTh0)

RR, (h0-
lThv)

RR, 
and (H0-

1Th0)
1*11 define the set of permutational isomeri­

zation reactions implied by h0
TR. In either case, this 

set may be partitioned into x + 1 subsets such that one 
subset contains a0 operations in R and each of the re­
maining x subsets is a maximal subset of reactions non-
differentiable in a chiral environment. Then 

\(/BR(h0
TB) == a0e + aji-i. + a2h2 + • • • + axhx 

defines a set of x permutational isomerization reac­
tions differentiable in a chiral environment. The 
reaction ht

RR corresponding to each A1 in this expres­
sion is nondifferentiable from the reactions in the rth 
subset in a chiral environment, and at is the number of 
reactions in the rth subset. If the intermediate poly­
topal configuration T describes a metastable inter­
mediate, then 0(/Sj = I1O4 is the probability that a per­
mutational isomerization reaction nondifferentiable 
from hi in a chiral environment will occur each time 
isomer R undergoes permutational isomerization via 
the intermediate T. If the intermediate polytopal 
configuration T does not describe a metastable inter­
mediate, then a,/2*4 = iOj may or may not have physical 
significance. If it does not, we say that "memory 
effects" are operative. 

For the interpretation of spectroscopic studies 

V1W*) = b0e + bih + b2h2 + ••• + bvhy 

may be of interest. This expression defines a set of per­
mutational isomerization reactions which are differ­
entiable in a totally symmetric environment. $RR(h0

TR) 
is obtained by partitioning the set of permutational 
isomerization reactions implied by h/R into y + 1 
subsets such that one subset contains b0 operations 
in R and each of the other y subsets is a maximal 
subset of reactions nondifferentiable in a totally sym­
metric environment. hRR is nondifferentiable from 
the reactions in the rth subset in a totally symmetric 
environment, and the rth subset contains b( operations. 

Examples 

In this section, four examples will be treated which 
illustrate the usefulness of the above definitions and 
formulas in solving stereochemical problems. The 
first example shows how polytopal isomerization 
reactions are enumerated. Next, the procedure for 
calculating connectivities is demonstrated. Then a 
system is discussed which undergoes permutational 
isomerization via an intermediate polytopal configu­
ration. The last example indicates how more complex 
systems may be treated. 

Figure 4. Six polytopal isomerization reactions are shown in (b). 
Indexing of skeletal positions is defined in (a). 

Cis-Trans Isomerization of MH2P4. The stereo­
chemistry of molecules MH2P4, where M = Fe, Ru, 
Os, H = a hydride ligand, and P = a trisubstituted 
phosphorus ligand, has been studied in detail.15 

Certain molecules of this type exist in both cis and 
trans forms, and these two polytopal isomers inter-
convert in solutions. We shall now examine all the 
distinct polytopal isomerization reactions which might 
describe the stereochemical change involved. 

The skeletal positions of the two polytopal forms 
are labeled as shown in Figure 4a. H1 = 4, H2 = 2, and 
the set of ligands is assigned the labels (P1, P2, P3, P4, 
H6, H6}. Also, R = C25, R=C2,T= Dih: and T = 
Di. The generalized cyclic type of each operation in 
the permutation groups generated by these point groups 
is shown in Table I. With this information in hand, 
we first calculate DDiC2, the number of polytopal isom­
erization reactions differentiable in a chiral environment. 
LettingB = D4and W=- C2 in eq Al 

DDid = I _ [ ~ i 2-1 \" 'iuu'aji.tiAiA" 'iihhii,icit->) X 
\JJi\\L,2\ Bi, Ci 

fl(JJiH)il(k<!lH) (10) 
t = l ! = 1 

(15) J. P. Jesson in "Transition Metal Hydrides," E. L. Muetterties, 
Ed., Marcel Dekker, New York, N. Y., 1971, pp 180-189. 
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Table I. Permutation Group Operations Generated When G« and Dih Act on the Indices of Skeletal Positions Defined in Figure 4a° 

Group Point group operations Permutation group operations Generalized cyclic type 

R = G 
R = G, 

T = Di 
T = Dih 

E 
G 

Ov' 

E 
d 
Ci-' 
G 2 

G 
G 
G' 
G' 
i 
Si 
S1"

1 

Cd 

<r» 
(Jv 

da 

Cd 

n = f, = (1X2X3X4X5X6) 
r2 = ?„ = (12X34X56) 
P3 = (1X2X34X5X6) 
r4 - (12X3X4X56) 

II = I1 = (1)(2X3)(4X5X6) 
/j = Z2 = (1234)(5)(6) 
f, = h = (1432)(5)(6) 
ti = U = (13X24)(5)(6) 
h = h = (1)(24)(3)(56) 
U = U = (13X2)(4)(56) 
?, = 2, = (12)(34)(56) 
/8 = ?8 = (14)(23)(56) 
h = (13X24X56) 
J10 = (1234)(56) 
III = (1432X56) 
Jn = (1X2X3X4X56) 
I1, = (1X24X3X5X6) 
in = (13X2X4X5X6) 
?15 = (12)(34)(5X6) 
J16 = (14X23X5X6) 

(4,0,0,0 ;2,0) 
(0,2,0,0 ;0,1) 
(2,1,0,0;2,0) 
(2,1,0,0 ;0,1) 

(4,0,0,0 ;2,0) 
(0,0,0,1 ;2,0) 
(0,0,0,1 ;2,0) 
(0,2,0,0 ;2,0) 
(2,1,0,0 ;0,1) 
(2 1,0,0;0,1) 
(0,2,0,0 ;0.1) 
(0,2,0,0 ;0,1) 
(0,2,0,0 ;0,1) 
(0,0,0,1 ;0,1) 
(0,0,0,1 ;0,1) 
(4,0,0,0 ;0.1) 
(2,1,0,0;2,0) 
(2,1,0,0;2,0) 
(0,2,0,0 ;2,0) 
(0,2,0,0 ;2,0) 

' The definition of generalized cyclic type is provided in Appendix I. 

Consulting Table I, we note that |D4| = 8 and \C2\ = 2. 
The summation extends over all generalized cyclic types 
which operations in C3 and Z)4 have in common. In 
this case, these generalized cyclic types are (4,0,0,0;2,0) 
and (0,2,0,0 ;0,1), and the summation contains only two 
terms. The number of operations in D4 and C2 having 
cyclic type UJ JiJsJi \ Kk2) is hDt

llhMt,klk,_ and hc*-hMlU,klka 

respectively. For the first term of the summation, 
A%>00,20 = 1, ACl4000.SO = 1, n , . i V V l " = 4! I 4 = 24, 
and Tl1 = Sk1!?' = 2!12 = 2. Therefore the first term 
equals 48. Following the same procedure, the second 
term is equal to 2-1 -(2!22)-(1 !21) = 32. Adding these 
two terms and dividing by C2|-|Z>4j = 16, we find 
D DtCi — 5. 

The value of DDiC, is not in itself a particularly use­
ful piece of information unless it is of help in actually 
generating a set of formally differentiable reactions. 
When dealing with permutational isomerization reac­
tions, a complete set of differentiable reactions could be 
derived from a set of formally distinguishable reac­
tions.716 Formally distinguishable reactions are un­
fortunately undefined for polytopal isomerization 
reactions, and other methods must be used to generate 
the desired reactions. For the present case, we make 
the following observation: if two operations ht

TR 

and hjTR convert the reference isomer into the same 
permutational isomer of polytopal form T, then ht

TB 

and hjTR are nondifferentiable in a chiral environment. 
Formally, let 

K 
T I A R 

and /*/*' ti' 

Then 

Oi-1YW 

and therefore 

ht™ = {tc'-h,)™ 

i.e., hi = ti~l-hj. Since there are n^.n-^.^D^ = 6 per­
mutational isomers of polytopal form Din, we list these 

(16) W. G. Klemperer, / . Chem. Phys., 56, 5478 (1972). 

six isomers on the right-hand side of Figure 4b and ex­
amine the polytopal isomerization reactions which 
generate these isomers when acting on the reference 
isomer of polytopal form C2c. Of these six reactions, 
only five can be differentiable in a chiral environment. 
Since A6 = tfhyr2, the first five reactions listed in Fig­
ure 4b serve as a complete set of polytopal isomeri­
zation reactions differentiable in a chiral environment. 

To determine which of these reactions are chiral, 
we look at "mirror images" of the five reactions. For 
example 

Z12-A1̂ f4 = (12)(3)(4)(5)(6) 

When (12)(3)(4)(5)(6)D<C= acts on Qf'-, it generates the 
same isomer as does h3

D,c- when acting on (l)e
C!-

Therefore (I12 • h • fi)0'0'- and h3
DiC'- are nondifferentiable 

in a chiral environment, indicating that h\D>c* and 
hzD,c- are enantiomers. We can similarly show that 
h2

DlC'- and hzD,Ci are enantiomers, and hiDiC- is achiral. 
Therefore, if we construct the topological representa­
tions generated by hy

DiC-, h2
D,c', and /z5

D,C!, we are as­
sured that any other polytopal isomerization reaction 
must generate one of these three topological repre­
sentations. 

Letting B = Dih and W = C2n in eq Al, we find 
DDnCh = 2. Since enantiomeric reactions are non­
differentiable in a totally symmetric environment, the 
set of reactions h0'0'-, h2

D,c\ and hb
DiCl must contain 

two reactions which are differentiable in a totally 
symmetric environment. These two reactions are 
hiDiC* and hDiCl (or h2

D,c'- and hDiCi) since hx = h2-f3. 
Polytopal Isomerization of Trigonal-Bipyramidal 

Molecules. In a discussion of topological representa­
tions generated by polytopal isomerizations of trigonal-
bipyramidal molecules, Muetterties3'17 examined six 
different processes, three of which are shown in Figure 
5a. Muetterties deduced that these three "classes" 
were open,3 since IT5T ^ IR5R. Using the formalisms 
developed in this paper, it was found that ITdT = IRSR 
regardless of closure properties. We shall therefore 
examine the connectivities of these processes in order 
to account for this discrepancy. 

(17) E. L. Muetterties, J. Amer. Chem. Soc, 91, 4115 (1969). 
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K)" 

(a) PROCESS y O -

PROCESS 4 ' D -

Figure 5. Some polytopal isomerization processes are shown in (a). 
Indexing of skeletal positions is defined in (b). 

In all these examples, H1 = 5 and H2 = 0. The 
ligand set {A, B, C, D, E} is labeled by [I1, I2, I3, h, 
/5 | in that order. Also, R is always D3h._ Labeling 
the skeletal positions as in Figure 5b, R and R consist of 

n = fi = (1)(2)(3)(4)(5) 
n = ft = (1X234X5) 
n = n = (1X243X5) 
r4 = U = (15X2X34) 
n = f5 = (15X3X24) 
n = rt = (15X23X4) 
f7 = (15X2X3X4) 
h = (15X234) 
f, = (15X243) 
fio = (1X2X34X5) 
fn = (1X24X3X5) 
fn = (1X23X4X5) 

For process 2, T = C8 and T = C1 (see Figure 5). 
Labeling the skeletal positions as in Figure 5b, h = h = 
(1)(2)(3)(4)(5), ?2 = (14X23X5). The polytopal isom­
erization reaction hf>D> = (l)(2)(3X4)(5)c'lZ'' de­
scribes the process, and (hr1)0"01 = (1)(2X3)(4)(5)DA 

is the reverse reaction. This reaction is chiral, and the 
enantiomeric reaction h2

ClD° = (14)(2)(3)(5)ClZ>s is also 
shown in Figure 5a, along with (hr1)0'01 = H2

D"C\ 
Accordingly, eq 7 and 8 must be used to calculate con­
nectivities. Since hi = hrl = e 

\D3 fl Hr1C1H1I = JC1 D H1D3Hr1] = 

and consequently 

5D3 = 2-|£>8| = 12 

6Cl = 2-IC1I = 2 

[Ci n D3 i 

Figure 6. Four polytopal isomerization reactions of (CH)5
+ are 

given in (a). A, B, C, D, and E represent CH groups. Indexing of 
skeletal positions is defined in (b). 

Also,/i„ = 5!/6 = 20and/ C l = 5!/l = 120. There­
fore /D t5D l = 20-12 = 240and/CloCl = 120-2 = 240. 
This result differs from Muetterties' in that he found 
5 Ds = 6, a result which indicates that the chiral nature 
of /jiClD» was overlooked. 

The reader may verify that the polytopal isomeriza­
tion reaction defined by process 3 is chiral and JD, = 20, 
ICl = 60, 5 D8 = 6, 5C2 = 2, and therefore ID,8D, = 
Icfia = 120. Again Muetterties finds 5D, = 3 by 
neglecting the chiral nature of this process. 

Labeling skeletal positions as shown in Figure 5b, 
we let h3

c,D° represent the polytopal isomerization re­
action which generates the Ci intermediate configura­
tion for process 4. This reaction cannot be chiral in 
the same sense defined above since T = Ci contains 
no improper operations. ID»&D> = ICl8Cl, but since SCl = 1, 
no permutational isomerization reactions of polytopal 
isomer D3 are apparently implied. This is unsatisfying 
since process 4 clearly does lead to permutational isomeri­
zation of the trigonal bipyramidal isomers. The "prob­
lem" is resolved by realizing that h/R and hx

TB are for­
mally differentiate reactions in a chiral environment. 
These reactions are clearly not symmetry equivalent since 
one represents a net rotation of a trigonal-bipyramidal 
face by d ^ 60°, and the other represents a net rota­
tion of 120 — 6. Thus "proper" description of the 
polytopal isomerization reactions implied by process 
4 in terms of the Ci intermediate configuration de­
mands the use of two differentiable isomerization re­
actions, H3

C'D3 and h4
CiD\ 

Permutational Isomerization of (CH)5
+. Stohrer and 

Hoffmann18 have suggested that the unique stable 
structure of the (CH3)+ cation is square pyramidal, 
and that permutational isomerization of this species 
should occur via an intermediate C2v configuration 
instead of a Dih configuration (see Figure 6). Should 

(18) W. Stohrer and R. Hoffmann, J. Amer. Chem. Soc, 94, 1661 
(1972). 
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(o) 

Table II. Permutation Group Operations Generated when C4«, 
Ctv, and D3!l Act on the Indices of the Skeletal Positions Defined 
in Figure 6b 

Figure 7. Three skeletal frameworks representing polytopal iso­
mers of molecules [(CR3)JA]2Fe2(CO)6. The numbers define index­
ing of the skeletal positions. 

this system ever be subjected to spectroscopic exam­
ination, it is probable that even though the postulated 
polytopal isomerization process takes place, the inter­
mediate Cu configuration will be very short-lived and 
therefore escape detection. The process could then 
only be characterized in terms of the permutational 
isomerization reactions implied by the polytopal isom­
erization process taking place. We shall therefore 
investigate the sets of differentiable permutational 
isomerization reactions implied by each of the two 
polytopal isomerization processes shown in Figure 6a 
to see if these pathways might be distinguishable on 
that basis. 

The first process shown in Figure 6a is characterized 
by hf^ = (1)(2)(3)(4)(5)C!<\ The permutation groups 
given in Table II are generated by C2, D3, C28, and Dih 

if skeletal positions are indexed as in Figure 6b. hic,Ci 

is achiral since U-hi-ft = hx. Thus the set of two 
operations (hr1 C2Zi1)

0'iCi = C2
c,Ci contains the per­

mutational isomerization reactions implied by Cx
0*0'. 

Since 
^ C ( Z J 1 C = C 1 ) = $CtCi(hC^ = e + h 

any permutational isomerization reaction implied by 
this process is nondifferentiable from t2

c>c< = (14)(2)-
(35)^ ' . 

For the second process shown in Figure 6a, R = C40 

and T' = D3h. The appropriate permutation groups 
are given in Table II. hiD°c> = (1)(2)(3)(4)(5)D!C4 

is achiral since h'-hi-fz = hi, and the set of six opera-

Group 

R = C4 
R — dv 

T = C2 
T = C2V 

V = D3 
T' = D3h 

Point group operations 

E 
C2 
C1 

Cr1 

(Tv 

Ov 

Od 

Od 

E 
C2 
Ov 

Ov' 

E 
C3 
C3 
C2 
C2 
C2 
Oh 

S3 
S3 
Ov 

Ov 

Ov 

Permutation group operation 

n = h = (1X2X3X4X5) 
n = h = (1X24X35) 
n = f3 = (1X2345) 
n = n = (1X2543) 
F, = (1X24X3X5) 
F6 = (1)(2X35)(4) 
h = (1X23X45) 
F8 = (D(25)(34) 

I1 = I1 = (1X2X3X4X5) 
/, = I2 = (14X2X35) 
h = (14)(2X3)(5) 
U = (1X2X35X4) 

h' = Z1' = (1)(2X3)(4X5) 
h' = h' = (124)(3)(5) 
,, ' = I3' = (142)(3)(5) 
W = W = (1)(24)(35) 
W = h' = (14X2X35) 
I6' = W = (12)(35)(4) 
I7' = (1X2X35X4) 
W = (124)(35) 
W = (142X35) 
I10' = (1X24X3X5) 
J11' = (14X2X3X5) 
In' = (12)(3X4)(5) 

tions (hrlDih)c,Ct = Dzc,c> contains the permutational 
isomerization reactions of interest. Since h' = ru 

ti' = r2, andr5 ' = /W2 ' = W-n = r2• te' • r2, we see that 

^c1(J11D3C1) = ^cc^^sc.) = 2e + At,' 

i.e., any permutational isomerization reaction implied 
by this process is nondifferentiable from ti'CiC' = 
(14)(2)(35f<c<. 

Comparing results, we note that u'= h and there­
fore both processes in Figure 6a imply the same per­
mutational isomerization reactions of the C4 polytopal 
isomer. 

Permutational Isomerization of Molecules [(CR3)2A]2-
M2(CO)6. Molecules of this type which have been 
shown to undergo permutational isomerization re­
actions include [(CFa)2P]2Fe2(CO)6,

19 [(CHs)2Ge]2Co2-
(CO)6,

20 and [(CHs)2P]2Fe2(CO)6.
21 The stable poly­

topal form of these molecules is shown in Figure 7a. 
Skeletal positions 1-4 are occupied by CR3 ligands, and 
positions 5-10 are occupied by CO ligands. Differ­
ent mechanisms have been proposed to describe the 
permutational isomerization of these molecules. The 
first, proposed by Adams and Cotton,20 assumes the 
C2n intermediate configuration shown in Figure 7b. 
Dessy, Rheingold, and Howard21 proposed alternative 
mechanisms which involve the D2n intermediate shown 
in Figure 7c. Neither of these intermediate configura­
tions has been detected by nmr spectroscopy. Hence, 
temperature dependent nmr line-shape simulations us­
ing the "jump model" must be based on the permuta­
tional isomerization reactions implied by the proposed 
polytopal isomerization reactions. We therefore ex­
amine these permutational isomerization reactions in 

(19) V. J. Grobe, Z. Anorg. AUg. Chem., 361, 32 (1968). 
(20) R. D. Adams and F. A. Cotton, J. Amer. Chem. Soc, 92, 5003 

(1970). 
(21) R. E. Dessy, A. L. Rheingold, and G. D. Howard, ibid., 94, 746 

(1972). 
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order to ascertain whether any or all of the mecha­
nisms may be ruled out on the basis of nmr studies. 

The Adams-Cotton mechanism (or AC mechanism) 
defines the polytopal isomerization reaction h\TR = 
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)™ if skeletal positions 
are labeled as in _Figure 7. The pertinent groups 
R = C2v, R = C2, T = C2n, and T = C2 are presented 
in Table III. 

hTR = ^TT. ^TR. ^RR = (14)(23)(576)(89 10)™ 

Table III. Permutation Group Operations Generated When 
G», GA, and Du1 Act on the Indices of the 
Skeletal Positions Defined in Figure 7 

Group 

R = d 
it = C2V 

T = G 
T = CtH 

T = Di 
T' = A* 

Point group 
operations 

E 
G 
(Tv 

a,' 

E 
G 

i 

E 
G 
G 
G 
;' 
a 
a 
a 

Permutation group operations 

n = h = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 
r2 = F2 = (13)(24)(58)(6 10)(79) 
F3 = (1)(2)(3)(4)(58)(69)(7 10) 
F4 - (13)(24)(5)(67)(8)(9 10) 

Z1 = Z1 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 
h = Z2 = (13)(24)(58)(6 10)(79) 
Z3 = (12)(34)(57)(6)(89)(10) 
Z4 = (14)(23)(59)(6 10)(78) 

h> = Z1' = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 
h> = Z2' = (13)(24)(58)(69)(7 10) 
h' = Z3' = (12)(34)(5 10)(69)(78) 
U' = Z4' = (14)(23)(57)(6)(8 10)(9) 
Z5' = (14)(23)(5 10)(69)(78) 
h' = (12)(34)(57)(6)(8 10)(9) 
Z7' = (13)(24)(5)(6)(7)(8)(9)(10) 
Z8' = (1)(2)(3)(4)(58)(69)(7 10) 

is a "mirror image" of /zir*. hiTR and /z2
T* are in fact 

enantiomers. The set of eight operations {hrlTh\)RB, 
(hr^Th2y

R, (A2-T/zi)**, and (hrlTh2)
RR contains four 

rotation operations and two pairs of reactions nondif-
ferentiable in a chiral environment, h2

RB = (14)(23)-
(576)(89 10)** and (12)(34)(59687 10)** = (r2-h2)

RR, 
h3«

B = (14)(23)(567)(8 10 9)**and(12)(34)(5 10 7869)** 
= (r2-h3)

RR. Therefore 

^BW) = 4e + Ih2 + 2h 

h2
RR and h3

BR are shown in Figure 8. 
Dessy, Rheingold, and Howard proposed their 

mechanism in terms of the two polytopal fragments 
shown in Figure 9. Using the skeletal indices defined 
in Figure 9, the enantiomeric polytopal isomerization 
reactions "d" = (l)(2)(3)(4)(5)(6)(7)c'^' and "/" = 
(1)(2)(3X4)(5)(67)C'^' are implied by their mech­
anism. The reactions d and / may be combined in 
four different ways to generate polytopal isomeriza­
tion reactions which interconvert the isomers of poly­
topal form Cu and Dih shown in Figure 7. 

dl==hf* = (lX2)(3)(4)(5)(6)(7)(8X9X10r* 

W = ht
T'* = (1X2)(3)(4X5)(67)(8X9 1Of* 

dd=BhS'R = (1X2X3X4X5)(6)(7)(8)(9 10)*"* 

Il \ T'R (1X2X3X4X5X67X8X9X10)1"* 

hT'R and /z6
rie are achiral reactions nondifferentiable 

in a chiral environment, while h/'R and hs
T'* are en­

antiomers. hT'R and Zz7
7"* are differentiate in a 

chiral environment. (One can easily show that a 
chiral reaction and an achiral reaction must always 

B5 • (l)(2)(3)(4l(5K67)(SK9IO) 

J 

K. -(UK25l(567)(89IO) 

Figure 8. Seven permutational isomerization reactions of mole­
cules [(CRs)2A]2Fe2(CO)6. Skeletal positions are indexed as in 
Figure 7a. The /,'s are ligand labels. The arrows represent permu­
tation operations, not mechanistic pathways. 

be differentiable in a chiral environment.) There­
fore, Dessy, Rheingold, and Howard actually proposed 
two nonequivalent polytopal isomerization processes: 

Klemperer / Stereochemistry of Polytopal Isomerization Reactions 
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(a) 

.L, 

(b) 4 
> - -

Figure 9. Two polytopal fragments: (a) is derived from Figure 
7a; (b) is derived from Figure 7c. Numbers are indices of the skele­
tal positions. 

T'B 

T'R 
one, which we call DRH-I, is characterized by h 
while the other, DRH-II, is characterized by h 
The reader may verify that 

^h1T'*) = e + A4 + h + h 

and 

^BB(J11T
1R) = 4e + Ih2 + Ih3 + Ah5 + 2/29 + 2hw 

where 

hiRR = (14)(23)(567)(89 \0)RR 

hRR = (1)(2)(3)(4)(5)(67)(8)(9 \0)RR 

h,RR = (14)(23)(57)(6)(8 10)(9)M 

hRR = (14)(23)(56)(7)(8 10)(9)Bfi 

and 

hw
RR = (14)(23)(57)(6)(89)(10)^ 

hiRR and h3
RR were defined above. All these reactions 

are shown in Figure 8. 
We now compare the sets 

TRR(U T'B\ = 

a n d 

^RRQTB) = e + h i + h i + ^ 

?RR(h7
T'R) = Ae + Ah2 + Ah + 4/J9 

The reactions h2
RR, h^RR, hb

RR, h6
RR, and h9

RR are all 
formally differentiable in a totally symmetric environ­
ment. Therefore, line-shape analysis of temperature-
dependent nmr spectra of a suitable model compound 
may enable one to establish which one (if any) of 
these mechanisms are consistent with experiment. 
[(CH B)2

31P]2Fe2C
13CO)6 might be suitable, assuming 

that all 13C-31P spin couplings are experimentally 
observed and resolved. In practice, such a decision 
may of course be impossible. The important point 

is that symmetry arguments do not rule out the pos­
sibility as was the case for the last example. 

Thus far, we have assumed that "memory effects" 
are ruled out. Although intermediate situations may 
exist, there is the extreme case where the "memory 
effect" is complete; i.e., the intermediate polytopal 
configurations must have connectivities of two. In 
this case, the AC mechanism implies h2

RR, DRH-I 
implies hRR, and DRH-II implies h9

RB. These three 
reactions are formally differentiable in a totally sym­
metric environment. 

Appendix I 

In this appendix, a formula is presented which counts 
double cosets BhtW in the permutation group H = 
Sn1 + S„a. B and W are arbitrary subgroups of H. 
For computational purposes, permutations in B and W 
are described by their generalized cyclic types. The 
generalized cyclic type of a permutation hk e H is 
Uuh, ---,Jn1; fo, k2, .. ., kn) if hk contains j t cycles of 
length i which permute the numbers one through ny 

among themselves and kt cycles length / which permute 
the numbers «i + 1 through «i + n2 among themselves. 
hB

hh ... ,„,,*,*, ...*„, and hw
hh . . . j B i , M l . . . *Bi are the num­

bers of permutations in B and W, respectively, having 
cyclic type (ju jt, ••-, Jn1; K h, ..., kn). If DBW is 
defined as the number of double cosets BhtW in H, then 

" B I l ' — 
1 

\B\\W\£ E(AV-
w 

-In1W2 Hn) X 

(h\,,... w... *„)no'«'/'on(*«»*o (A1) 
i = 1 I 

where the summation is made over all cyclic types 
found in B and W. This formula is a trivial exten­
sion of a theorem by de Bruijn22 and no proof is 
provided. It may be derived following the procedures 
used in Appendix II of ref 7. Since eq Al is sym­
metric with respect to permutation of B and W, DBW = 
DWB. IfB= W, eq Al reducestoeq A8 of ref7. 

Appendix II 

Here, formulas for calculating connectivities are 
provided. We choose an arbitrary permutational iso­
mer of polytopal form R which is defined by the set of 
(l)R matrices RRR(l)t

R. The polytopal isomerization 
reaction h0

TR and its "mirror image" h/R convert this 
permutational isomer to the permutational isomers of 
polytopal form T defined by (S)

T matrices contained in 
the sets 

and 

TTThTRRRB 

TTThv
TRRRR 

l\B 

CX 
Two of these © r matrices, C ) / and (•) / define the same 
permutational isomer if 

/' 

(22) N. G. de Bruijn in "Applied Combinatoral Mathematics," E. 
Beckenbach, Ed., Wiley, New York, N. Y„ 1964, p 166. 
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for some t?T e TTT. In other words, the number of 
right cosets Tht contained in the sets of operations 
Th0R and ThPR equals the connectivity 8B. 

We first assume that h0
TR is achiral. Then by defini­

tion, Th0R — ThpR. Thus 8R is the number of right 
cosets Thi in Th0R. This number is calculated by eq 
A2.23 

If h0 is chiral and hv = I0 • h0 - f0, then the sets of opera­
tions Th0R and ThPR are mutually exclusive. We shall 
demonstrate that the number of right cosets Tht in 
Th0R equals the number of right cosets Th} in ThpR; 
i.e., eq A3 holds. 

We put the elements of h0R and hvR into a 1:1 cor­
respondence by associatingh0• rn with t0-h0-rn-?0. Proof 

(23) For a proof, see ref 10. Note that Hall uses a different con­
vention for naming right and left cosets from that used here. 

I n a review on organolithium compounds, Brown2" 
reported that alkyllithiums do not absorb in the 

ultraviolet region. This conclusion was based mainly 
on the work of Waack and Doran2b who studied a series 
of alkyllithium derivatives in tetrahydrofuran solutions 
and observed only end absorption. 

Molecular orbital calculations by Weiss and Lucken3 

predict that the methyllithium tetramer should have a 
transition between the highest occupied molecular or­
bital (t2) and the lowest unoccupied molecular orbital 
(ai) occurring about 240 nm. More sophisticated cal­
culations by Cowley and White4 using SCC and 
CNDO/1 methods were used to predict transitions at 
403 and 100.6 nm, respectively, for the methyllithium 
tetramer. 

(1) (a) Xavier University; (b) Wayne State University. 
(2) (a) T. L. Brown, Advan. Organometal. Chem., 3, 365 (1965); (b) 

R. Waack and M. Doran, / . Amer. Chem. Soc, 85, 1651 (1963). 
(3) K. Weiss and E. A. C. Lucken, J. Organometal. Chem., 2, 197 

(1964). 
(4) A. H. Cowley and W. D. White, / . Amer. Chem. Soc, 91, 34 

(1969). 
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of eq A3 involves showing that 

h0-rn = ti-h0-rm 

for some tit T if and only if 

I0-i*0-*n' Y0
 == tj -10- n0-rm' T0 

for some tj e T. This relation holds since: (i) for any 
given tj and I0, tj-I0 = I0- tk for some tktT and, there­
fore, if 

t0' Tt0-Tn-T0 = tj-10- Zt0- Vm- T0 

then 

t0- rl0-Vn-f0 = t0-tk-it0-rm- T0 

and consequently 

h0-rn = t>.-h0- rm 

for some tk e T. (ii) h0-rn = tt• h0• rm implies that 

I0 ' It0 ' T n ' ^o ~ ô ' * 1 ' Tt0 ' 'm ' ^o 

Since I0-tt = tj-l0 for some t} tT 

t0-It0-Tn-T0 = tj-t0-it0-Tm- T0 

Oliver, et al.,6 have reported a transition for «-butyl-
lithium in hexane occurring at Xmax 220 nm, while Glaze 
and Brewer6 have observed a transition for ethyllithium 
in isooctane with Xmax 210 nm. Due to the extreme re­
activity of these compounds and the difficulty in ob­
taining solvents which are completely free of moisture, 
oxygen, and olefinic impurities, these results have been 
viewed with skepticism (see for instance the referee's 
comment in ref 6). 

In an effort to establish whether these reported tran­
sitions were due to the alkyllithium species both vapor 
phase and solution studies of the ultraviolet spectra of 
organolithium derivatives were initiated. Additional 
molecular orbital calculations were carried out using 
the CNDO/2 method since it is reported that these cal­
culations give better results than the earlier CNDO/1 
scheme.7 

(5) J. P. Oliver, J. B. Smart, and M. T. Emerson, ibid., 88, 4101 
(1966). 

(6) W. H. Glaze and T. L. Brewer, ibid., 91, 4490 (1969). 
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Abstract: The ultraviolet spectra of ethyl-, n-butyl-, jec-butyl-, and ?erf-butyllithium have been observed and 
found to have Xmax of 215 and 203 nm for ethyl (vapor phase) t ~103; /z-butyl, \ms.x 210 nm, e 5.2 X 102 (hexane 
solution); rec-butyl, Xmax 206 nm (vapor phase); and tert-buty\, Xmax ~190 nm, e ~103 (vapor phase). The 
energies of the electronic transitions have been determined from CNDO/2 calculations on idealized tetrameric 
and hexameric methyllithium and on the basis of these transitions were predicted at 10.0 eV (124 nm) and at 7.26 
eV (171 nm), respectively, in reasonable agreement with observed values. 
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